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La physique nucléaire en astrophysique : hautes énergies

La physique nucléaire concerne les noyau atomiques, les nucléons (protons, neutrons)
et les particules élémentaires : leptons (€lectrons, muons, taus, neutrinos), quarks et
bosons.

Intérieur des étoiles:

- réactions thermonucléaires produisent I'énergie qui maintient les étoiles en
équilibre et leur permet de rayonner.

- nucléosynthese pour fabriquer les élements lourds.

Explosions des supernovee:
- nucléosynthese des élements les plus lourds dont les isotopes se retrouvent
expulsés dans le milieu interstellaire.

Milieu interstellaire: le rayonnement cosmique



Matiére | antimatiere

Chaque particule de matiere (nucléons et particules élémentaires) a son antiparticule :
proton — antiproton, électron — anti-électron ...

Méme masse, charge électrique opposee, spin Oppose.
Dans le cas de I'électron, on a I'habitude d’appeler son antiparticule « positron ».

Une propriété importante : matiere et antimatiere ne peuvent se supporter, leur rencontre
est explosive : annihilation avec emission de photons.

Pourquoi l'univers est-il composeé presque exclusivement de matiere ? C’est une bonne
guestion ...

Il y a toutefois quelques antiparticules qui trainent dans la Galaxie, crées par la décroissance
radioactive des isotopes fabriqués dans les étoiles, les SN et par divers phénomenes tres
énergétiques.
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Spectrométrie gamma Diode au germanium (Ge) : .
Spectrometre a haute résolution.

Scintillation dans un cristal -

. . 4pp
’
d’iodure de sodium (Nal)
Tube
Trajet Photocathode Electrode de photomultiplicateur
d |on|sat|on focalisation
2
m% H_LLE ‘K ) ’ Py \ é 1500 | 214
Photon a 3 § AR ?C:)
haute Ph°t : 8
énergie faible energle \ /
214
scmt|llateur EIectrons Electrons Dynode Anlode FA
primaires secondaires —
n
]
o
= 1000 =
O
- O,
¥
56@_
£ SPECTRE DU SECTEUR 3
g DU PUITS D’ANTICOINCIDENCE
5 214 . C A :
H g | Spectre gamma de minerai d’'uranium
W
2 500 | E
b3
8
S
xw 214G
=
2145 g 24 a0y 214
g | 2145
0 Nil_:l L,l. 1La|J.41]‘
NUMERO DE CANAL | [Ke
; 0 500 1000 1500 UL

Figure 4. Spectre d'un cristal d'anticoincidence autour de 511 KeV T .
© wikipedia



2.1.1.2 44Ti

Exemple de diagramme de
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Figure 2.3: Schematic of the relevant decays of YTi
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Expérience CESAR

Spectromeétre gamma a haute résolution

Collaboration du Centre’d’Etude Spatiale des Rayonnements (CESR, Toulouse)
et du Commissariat a 'Energie Atomigque (CEA, Saclay)

Pls de I'expérience et superviseurs a Toulouse :
Francois Albernhe et Gilbert Vedrenne (CESR)

Analyse des données des
campagnes de lancement
de ballons stratosphériques
au Brésil (1976-1977).

Schéma de la nacelle de
I'expérience ballon PILOT
(CESR). © Wikipedia
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zone morte

Expérience CESAR o

Spectrometre gamma a haute résolution
& day
o
Cristal de germanium (Ge) dopé au lithium (Li) el a¥a
Refroidi a la température de I'azote liquide (-196°C) 7 s

Placé dans un systeme d’anticoincidence :
4 cristaux de Nal.

Figure 2. Dimensions de la diode
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Expérience CESAR er

Spectrometre gamma a haute résolution

Cristal de germanium (Ge) dopé au lithium (Li)
Refroidi a la température de I'azote liquide (-196°C)

Placé dans un systeme d’anticoincidence :
4 cristaux de Nal.
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Lorsqu’un photon gamma ou une particule chargée
est detecté dans un des cristaux de Nal, le systeme
d’analyse du détecteur de Ge est bloqué pendant
20us.
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Seuls les photons venant de la partie supérieure du
détecteur sont analysés.

Figure 3. Schéma du puits d'anticoincidence



EFFICACITE ANGULAIRE (°0)

Expérience CESAR Efficacité du systéme

Spectrométre gamma a haute résolution d’anticoincidence.
2 La largeur a mi-hauteur est
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1 MeV
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La mesure de l'intensité d’'une raie se fait en
intégrant le signal dans une bande centrée sur la rie
et en lui soustrayant les valeurs du continu de
chaque cote.

Taux de comptage

AE/, AE AE),

Figure 10, Visualisation des domaines d'énergie
chotsis pour calculer le flux d'une

rate garma



Les positrons sont produits par radioactivité 3+

Production de deux rayons gamma a 511 keV, annihilation
électrons-positrons

Annihilation of e*in the ISM et
Y L
- Direct annihilation Y v .
line N e positron
e = P _
- Positronium formation y N, € electron
e +e >Ps+y or e+ H->Ps+ H h ) S\ v neutrino
e Y / E,=511ke Sy quantum/photon
o V 511 keV
1/4 ( ! —> | ( )
Y © wikipedia
e Y
a+
continuum Ps
3/4 — o)
—
e Y Y

E,<511keV
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Les positrons sont produits par radioactivité 3+

Production de deux rayons gamma a 511 keV, annihilation
électrons-positrons :

er+e —-» y+y

E =mc? (1+y) (1£pB)/2 ~ 511 keV (3~0) _
e T positron

¢~ electron

v neutrino

/ 7Y quantum/photon

1So: ~25%, 1.25%x10%%, - 2y ) (511 keV)
3So: ~75%, 1.5x10”"s, —» 3y — broader line © wikipedia

Décroissance du positronium




Désintégration d’une particule du
rayonnement cosmique dans I'atmosphére

— Création de positrons e+

Entrée d'un proton de 105 eV® 35 km d'altitude

dans l'atmosphére l
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Arrivée au sol de quelques 10*¢ particules :
80% v ; 18% e~/e* ; 1,7 % muons ; 0,3% hadrons
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Mesure du flux de la raie a 511 keV

Flux mesuré : 2.9 + 1.6 10 photons s* cm? (1.80 ! =)

Comparaison avec les mesures contemporaines

Premiere expérience utilisant un détecteur au germanium.

Confirme que I'emission a 511 keV est étendue et non ponctuelle.

w
T

N
T

T

o

8 HAYMES (1973)
X LEVENTHAL (1978)
OHAYMES (1975)
VALBERNHE ET AL{1979
@ EXPERIENCE CESAR

it I ¥ 1 " " |
° 60° 120° .

Figure 25. Flux observés d 511 KeV en fonction du champ du
détecteur

[}
T

4]
I

S
T

24° 24°

b,

FLUX (PHOTONS cm™2s~*x103)
n [4']
1

-
I
-
E)
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plotted for the wide FOV experiments. Measurements made with Ge detectors are indicated with an arrow.
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Mesures recentes : le satellite Integral (2002)
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Figure 1. Spectrum of the e*e ™ annihilation radiation (fixed background
model) detected by SPI from the GC region and the best-fitting model (thick
solid line, see Table | for parameters). The dotted line shows the ortho-
positronium radiation and the dashed line shows the underlying power-law

continuum.

Knodlseder et al., 2005, A&A 441,513.
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Mesures recentes : le satellite Integral (2002)
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Mesures recentes : le satellite Integral (2002)

Modele possible de distribution de I'émission a 511 keV,
avec une composante du bulbe et du disque :

RMLR=470.4

]

Knodlseder et al., 2005, A&A 441,513.




Origine des positrons galactiques

Sources possibles de positrons galactiques (J. Knoddlseder, 2005) .

L'émission a 511 keV est essentiellement observée dans le bulbe galactique avec une
distribution a symetrie spherique.
Faible contribution dans le disque.

Les sources suivantes sont improbables pour le CG parce qu’elles se réepartissent
dans le disque :

* Les etoiles Wolf-Rayet et les SN produisent des radio-isotopes (3+.

* Une hypernova récente au centre galactique.

* Interactions des rayons cosmiques : N + p —» 11+—» e+

* Binaires X de grande masse : trou noir ou étoile a neutrons + étoile supergeante
bleue ou Wolf-Rayet.

e Trous noirs galactiques et microquasars.

Elles peuvent expliquer la composante du disque.



Origine des positrons galactiques

Sources possibles de positrons galactiques (J. Knoddlseder, 2005) .

L'émission a 511 keV est essentiellement observée dans le bulbe galactique avec une
distribution a symetrie spherique.
Faible contribution dans le disque.

Les sources suivantes sont possibles parce qu’elles
se concentrent dans le bulbe :

* Binaires X de faible masse (LMBX) : trou noir ou étoile a
neutrons + étoile de petite masse (séquence principale ou geante
rouge).

e Supernovae de type la (SNs thermonucléaires) : Systemes
binaires serrés avec une naine blanche et une autre étoile

quelconque. Produisent des radio-isotopes B+ de *°Co (1=111day)

* Hypothétiques WIMPS (weakly interactive massives patrticles)

© wikipedia
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